
I AUTOCUISEUR

TPC1 2025/2026 – DS Physique n°3 (4h)

Si au cours de l’épreuve un candidat repère ce qui lui semble être une erreur d’énoncé, il le signale sur sa copie et poursuit
sa composition en indiquant les raisons des initiatives qu’il est amené à prendre.

La calculatrice est autorisée

Consignes à suivre à chaque DS :

◦ Numéroter les pages. Numéroter les questions (inutile d’écrire les titres).
◦ Soigner la rédaction et la présentation : aérer la copie, encadrer ou souligner les résultats.
◦ Lire rapidement l’ensemble du sujet en début d’épreuve : les exercices sont indépendants et peuvent être traités dans l’ordre

de votre choix.
◦ Pour un exercice donné, traiter et rendre les questions dans l’ordre.
◦ Toute application numérique ne comportant pas d’unité ne sera pas prise en compte.

I ) Autocuiseur

Figure 1 – Autocuiseur

L’autocuiseur (figure 1), couramment appelé « cocotte-minute », a été inventé en 1679
par le français Denis Papin.

Il s’agit d’un dispositif de cuisson des aliments sous une pression supérieure à la pression
atmosphérique. L’augmentation de pression s’accompagne d’une augmentation de la tem-
pérature maximale atteinte, ce qui accélère la cuisson des aliments. Une soupape permet
de limiter la pression intérieure en évacuant la vapeur d’eau formée et assure une cuisson
à température constante.

L’autocuiseur contient toujours un peu d’eau en plus des aliments à cuire. La cuisson se
déroule alors en trois étapes :
◦ un régime transitoire de montée en pression (et en température) du contenu de l’auto-

cuiseur ;
◦ un régime de cuisson durant lequel la pression et la température de la vapeur d’eau

restent constantes (la vapeur qui s’échappe par la soupape est compensée par la vapo-
risation de l’eau contenue dans l’autocuiseur) ;

◦ une décompression, souvent rapide, pour arrêter la cuisson.

Figure 2 – Étapes de cuisson dans un autocuiseur

I.1) La soupape

I.1.a) Masse de la soupape

La soupape d’échappement de la vapeur est un cylindre de masse m placé sur le couvercle de l’autocuiseur. Elle peut coulisser
verticalement sans frottement sur un cylindre creux qui fait communiquer l’intérieur de l’autocuiseur avec l’extérieur (figure
3).
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I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Figure 3 – Schéma de fonctionnement de la soupape d’échappement

Lorsque la pression augmente dans l’autocuiseur, la soupape monte, ce qui permet à la vapeur de s’échapper. En régime
permanent, la soupape reste à hauteur constante (figure 3c) et est en équilibre sous l’effet de son poids et des forces de
pression.

La pression extérieure vaut Pext = 1,01× 105 Pa. On note Pint la pression à l’intérieur de l’autocuiseur.

La soupape est pesée sur une balance de cuisine (figure 4a) dont un extrait de la notice est donné (figure 4b).

Figure 4 – Balance de pesée

1) En tenant compte de l’indication de précision mentionnée par la notice de la balance, écrire la valeur numérique de la
masse m de la soupape. L’évaluation de son incertitude-type associée serait-elle de type A ou de type B ? Aucun calcul
d’incertitude n’est demandé par la suite.

I.1.b) Équilibre de pression

Figure 5 – Indications sur l’au-
tocuiseur

La section du conduit cylindrique d’évacuation de la vapeur vaut S = 7,00 mm2. Des
indications de pression et le volume de l’autocuiseur sont gravés sur celui-ci (figure 5).

On note g = 9,81 m · s−1 la valeur du champ de pesanteur.

2) Représenter, à l’équilibre, la soupape et les trois forces qui s’exercent sur elle.

3) Déterminer l’expression littérale de Pint en fonction de Pext, m, g et de S. Déterminer
la valeur numérique de Pint.

4) L’une des indications gravées sur l’autocuiseur permet-elle de confirmer ce résultat ? À
quoi correspond vraisemblablement l’autre indication de pression ?

I.2) Mesures dans l’autocuiseur et exploitation

On verse un volume Ve = 1,00 L d’eau dans l’autocuiseur que l’on ferme et que l’on place
sur une plaque chauffante délivrant la puissance thermique Pth = 1,50 kW.

Des capteurs placés dans l’autocuiseur permettent d’enregistrer la température de l’eau, la température de la phase vapeur
ainsi que la pression de la phase vapeur au cours du temps (figure 6).
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I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Figure 6 – Mesure de températures et de pression dans l’autocuiseur

On note :
◦ me la masse de l’eau,
◦ ce = 4,18 kJ · kg−1 ·K−1 la capacité thermique massique de l’eau,
◦ Ca = 1,23 kJ ·K−1 la capacité thermique de l’autocuiseur.

L’eau et l’autocuiseur sont constamment à la même température et on note Ti leur température initiale.

I.2.a) Premier modèle

Dans un premier temps, on suppose que toute la puissance thermique Pth est transférée à l’autocuiseur et à l’eau.

5) Relever sur la figure 6 la température initiale Ti.

6) On note ∆t la durée au bout de laquelle l’eau et l’autocuiseur atteignent la température Tf = 100 ◦C. Déterminer
l’expression littérale de la durée ∆t en fonction de me, ce, Ca, Tf , Ti et de Pth. Déterminer la valeur numérique de ∆t.

7) Cette durée est-elle compatible avec les données de la figure 6 ? Si non, donner deux arguments permettant de justifier cet
écart.

I.2.b) Second modèle

Dans un second temps, on tient compte des pertes thermiques de l’autocuiseur vers son environnement au cours du temps
sous la forme d’une puissance thermique de fuite Pf = k

[
T(t)− Text

]
où k et Text sont des constantes.

8) En effectuant un bilan thermique sur le système { eau + autocuiseur } pendant l’intervalle de temps infinitésimal dt,
montrer que la température du système satisfait l’équation différentielle :

dT

dt
+

T − Text

τ
=

Pth

τk
(1)

et déterminer l’expression de τ en fonction de me, ce, Ca et de k.

9) On cherche une solution de l’équation 1 sous la forme T(t) = A + B e−t/τ . Déterminer les expressions littérales de A et
de B en fonction des paramètres de l’équation 1.

Le tracé de la solution de l’équation 1 est présenté sur la figure 7.

N. Perrissin | 2025/2026 | TPC1, Mermoz Page n°3/11



I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Figure 7 – Évolution de la température intérieure en fonction du temps

10) Déduire de la figure 7 la durée ∆t′ nécessaire pour atteindre la température Tf = 100 ◦C. Le résultat est-il cohérent avec
la durée ∆t trouvée précédemment ? Justifier. Le résultat est-il satisfaisant ? Justifier.

I.2.c) Augmentation de la vitesse de cuisson

On observe sur la figure 6 qu’au-delà de 500 s, le régime permanent de cuisson est atteint. On note Tp la température de
cuisson et Pp la pression de cuisson en régime permanent.

11) Relever sur la figure 6 la température de cuisson Tp et la pression de cuisson Pp en régime permanent.

12) Préciser la raison thermodynamique pour laquelle la température et la pression sont devenues constantes.

La pression de vapeur saturante de l’eau dépend de la température, comme le montre la figure 8.

Figure 8 – Évolution de la pression de vapeur saturante en fonction de la température

13) Reproduire cette courbe sur votre copie en y positionnant :
◦ le point de cuisson en régime permanent dans un autocuiseur (Tp, Pp) ;
◦ le point de cuisson à ébullition sous pression ambiante (Ta, Pa) (qui correspond par exemple à la cuisson de pâtes dans

une casserole d’eau bouillante).

La figure 9 donne le facteur de vitesse de la cuisson en fonction de la température de cuisson. La référence est prise à 100 ◦C.
Par exemple, une cuisson à 80 ◦C a un facteur de cuisson de 0,25 et est donc quatre fois plus lente qu’à 100 ◦C.
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II EXPÉRIENCE DE RÜCHARDT

Figure 9 – Évolution du facteur de cuisson en fonction de la température

14) Sachant que la cuisson de légumes dans une casserole d’eau bouillante à l’air libre s’est faite en 20 minutes, estimer la
durée nécessaire à la cuisson de la même quantité de légumes dans un autocuiseur.

I.2.d) Estimation du débit de vapeur

Lorsque l’autocuiseur fonctionne en régime permanent, la puissance thermique de la plaque chauffante est réduite à Pth =
600 W. Un jet de vapeur d’eau s’échappe continûment par la soupape.

La puissance fournie par la plaque chauffante sert en partie à vaporiser l’eau présente dans l’autocuiseur et est en partie
perdue, les pertes étant de l’ordre de Pf = 350 W.

On admet que la quantité d’eau vaporisée pendant la cuisson reste suffisamment faible pour considérer le volume d’eau liquide
présent dans l’autocuiseur comme constant et égal à Ve = 1,00 L (hypothèse H).

On suppose que le gaz présent dans l’autocuiseur est uniquement constitué de vapeur d’eau. Dans les conditions de cuisson,
l’enthalpie massique de vaporisation de l’eau vaut ∆vaph = 2,23 MJ · kg−1

15) Expliquer pourquoi il apparaît des gouttelettes d’eau liquide dans le jet de vapeur à sa sortie par la soupape.

16) Déterminer, à l’aide d’un bilan enthalpique, le débit massique du jet de vapeur d’eau en mg · s−1.

17) En déduire la masse d’eau perdue dans le jet pour une cuisson de 10 minutes. L’hypothèse H est-elle toujours vérifiée
sur des durées de cuisson usuelles de 30 minutes ?

II ) Expérience de Rüchardt

Ce sujet propose une étude de l’expérience de Rüchardt. Elle consiste à placer un gaz dans un récipient étanche muni d’un
tube (figure 10). On ferme le tout par un piston qui peut librement coulisser dans le tube. Le diamètre du piston est du
mieux possible égal à celui du tube, ce qui assure une étanchéité (pas de fuite de gaz).

Sous l’action de son poids, le piston commence à descendre. Ceci fait augmenter la pression dans le récipient, ce qui finit par
arrêter la descente du piston, et par le faire remonter. Il s’en suit une série d’oscillations, comme on peut le voir sur la figure
11.
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II.1 Détermination de la période des oscillations II EXPÉRIENCE DE RÜCHARDT

Figure 10 – Photographie et schéma de l’expérience

Proposée par Rüchardt en 1929, perfectionnée à plusieurs reprises, cette expérience et ses variantes ont permis des mesures
extrêmement précises du coefficient adiabatique γ de divers gaz (aucune connaissance sur γ n’est nécessaire). Pour le gaz
utilisé dans l’expérience, la valeur théorique est γ = 1, 4.

Formulaire :
(1 + z)

a ≃ 1 + az avec : z ≪ 1

II.1) Détermination de la période des oscillations

On utilise les notations de la figure 10. En particulier :
◦ V0 est le volume initial de l’ensemble du gaz (récipient + partie dans le tube sous le piston).
◦ V (t) est le volume de ce même gaz, mais à un instant t quelconque. La pression du gaz est notée P(t) et sa température
T(t).

◦ La pression atmosphérique est P0. C’est aussi la pression dans le récipient à l’instant initial.
◦ La section du tube est notée Σ.
◦ La masse du piston est m et l’intensité de la pesanteur est g.
◦ −→ex est un vecteur unitaire descendant.

On admet que la résultante des forces de pression qui s’exercent sur le piston s’écrit :
−→
Fp =

[
P0 − P(t)

]
Σ−→ex

On fait finalement l’hypothèse qu’il n’y a aucun échange thermique entre le gaz et le milieu extérieur (parois parfaitement
isolante thermiquement). On dit que le gaz évolue de manière adiabatique. Dans ce cas, la loi de Laplace (admise) affirme
que :

P(t)× V γ(t) = P0 × V γ
0

18) Établir la relation entre V (t), V0, la section Σ et l’abscisse x du piston (telle que définie sur la figure 10).

19) En utilisant la loi de Laplace et un développement limité valable pour Σx ≪ V0, montrer que la résultante des forces de
pression qui s’exercent sur le piston se met sous la forme :

−→
Fp = −γkx−→ex

avec k une constante à exprimer en fonction des données du problème.

II.1.a) Méthode de Rüchardt

En plus de
−→
Fp, la seule autre force prise en compte comme agissant sur le piston est la force de pesanteur.

20) À l’aide d’une étude mécanique, établir une équation différentielle portant sur x(t). L’écrire sous une forme canonique
en faisant intervenir la pulsation propre ω0. Donner l’expression de ω0 en fonction de k, γ et m.

21) Établir l’expression de la solution x(t) de cette équation différentielle, en fonction de ω0, t, m, g, γ, k, ainsi que de deux
constantes A et B qu’on ne cherchera pas à déterminer.

22) Pour l’expérience considérée ici,
m

k
= 4,01× 10−2 s2. On mesure une période des oscillations T0 = 1,08 s. Déterminer la

valeur de γ trouvée expérimentalement.
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II.2 Étude mécanique avec frottements II EXPÉRIENCE DE RÜCHARDT

II.1.b) Méthode de Rinkel

Une seconde méthode, exploitée par Rinkel en 1929, consiste à mesurer la distance maximale L parcourue par le piston
avant qu’il ne remonte pour la première fois. Le piston est lâché en x = 0 sans vitesse initiale. On utilise ici une méthode
énergétique afin de déterminer l’expression de L.

23) Donner, en faisant intervenir les grandeurs m, g, x et ẋ, les expressions de l’énergie cinétique Ec du piston et de son
énergie potentielle de pesanteur Epp .

24) Déterminer l’expression de l’énergie potentielle Epf associée à la force :
−→
Fp = −γkx−→ex.

25) Déterminer par une méthode énergétique l’expression de la distance L en fonction de g, k, γ et m.

II.2) Étude mécanique avec frottements

Un pointage vidéo réalisé sur une expérience est montré sur la figure 11. L’amortissement de la courbe x(t) montre qu’il y
a présence de dissipation (frottements solides ou fluides, échanges thermiques, non uniformité de la pression, amortissement
d’ondes acoustiques...). L’objectif de cette partie est de modéliser cette courbe, sans chercher à comprendre le détail du
processus de dissipation.

Figure 11 – Données issues d’un pointage vidéo. L’échelle des x est approximative, celle des t est précise.

Nous supposons que l’équation du mouvement du piston s’écrit sous la forme suivante, et nous allons tester si ceci permet
une description correcte de l’enregistrement x(t) :

ẍ+
ω0

Q
ẋ+ ω2

0x = g

La pulsation propre de ce système est ω0, son expression théorique reste la même que précédemment. Le facteur de qualité
Q traduit la présence plus ou moins forte de dissipation. Le second membre g est constant.

26) En vous aidant de la figure 11, et sans faire de calculs, donner en justifiant une valeur approchée de Q. Comment se
nomme le type de régime dans lequel se trouve le système ?

On écrit la forme générale des solutions de l’équation homogène ainsi :

xH(t) =
[
A cos(Ωt) +B sin(Ωt)

]
e−µt avec : µ =

ω0

2Q
et Ω = ω0

√
1− 1

4Q2

27) Donner la forme générale des solutions x(t).

28) On suppose que la masse est lâchée en x = 0 sans vitesse initiale. Déterminer alors les expressions des constantes A et
B en fonction de Ω, µ, ω0 et g. Tracer l’allure de la solution x(t).

29) Y a-t-il une différence significative entre la période propre T0 et la pseudo-période T ? Justifier.

30) Un modèle des données est représenté figure 12. En utilisant une de vos expressions précédentes, et les valeurs numériques
en légende de la figure, en déduire une valeur approchée de Q.
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III DÉTECTEUR DE MÉTAUX

Figure 12 – Données et modèle du type C +
[
A cos(Ωt) +B sin(Ωt)

]
e−µt. Le programme retourne, en unité cohérente SI :

Ω = 5,83, µ = 0,30, A = −0,43, B = −0,059 et C = 0,53.

31) Un second modèle, présenté figure 13, est en meilleur accord avec les données. Proposer une cause physique possible à
l’existence du terme supplémentaire en D × t.

Figure 13 – Données et modèle du type C+
[
A cos(Ωt)+B sin(Ωt)

]
e−µt+Dt. Le programme retourne, en unité cohérente

SI : Ω = 5,82, µ = 0,29, A = −0,42, B = −0,037, C = 0,47 et D = 0,011.

III ) Détecteur de métaux

Les détecteurs de métaux sont des instruments électroniques capables d’indiquer la présence de masses métalliques de nature et
de taille différentes. Les détecteurs fixes sont utilisés dans les aéroports, dans l’industrie agro-alimentaire ou pharmaceutique,
sur les réseaux routiers, etc. Les détecteurs mobiles peuvent servir à localiser et suivre le cheminement de canalisations
enterrées ou de fils électriques, à aider aux fouilles archéologiques, à repérer des engins dangereux, etc.

III.1) Oscillations libres d’un circuit RLC série

L’élément déterminant du détecteur de métal est la bobine, indispensable à la détection, qui est utilisée dans un montage
oscillateur. L’étude du fonctionnement de l’oscillateur va nous permettre de déterminer les caractéristiques de la bobine.

On réalise un circuit RLC série dont le schéma de principe est donné sur la figure 14. Il est constitué :
◦ d’un générateur basse fréquence (GBF), de résistance interne Rg et de force électromotrice e(t) ;
◦ d’une résistance variable R, de valeur comprise entre 0 Ω et 10,0 kΩ ;
◦ d’un condensateur de capacité variable C, de valeur comprise entre 0,01 µF et 1,00 µF ;
◦ d’une bobine réelle d’inductance L et de résistance r inconnues.
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III.1 Oscillations libres d’un circuit RLC série III DÉTECTEUR DE MÉTAUX

Figure 14 – Circuit RLC série

On pose :
◦ Rt = R+Rg + r la résistance totale du circuit ;

◦ ω0 =
1√
LC

sa pulsation propre ;

◦ Q =
Lω0

Rt
=

1

Rt

√
L

C
le facteur de qualité correspondant.

32) Montrer que l’équation différentielle satisfaite par la tension vc aux bornes du condensateur se met sous la forme :

d2vc
dt2

+
ω0

Q

dvc
dt

+ ω2
0 vc(t) = ω2

0 e(t)

On suppose que Q >
1

2
.

33) En régime libre e(t) = 0, montrer que la pseudo-période T des oscillations peut s’écrire T =
T0√

1− 1

4Q2

et déterminer

l’expression littérale de T0.

34) En déduire que l’on peut écrire T 2 =
aC

1− bC
et exprimer a et b en fonction des caractéristiques du circuit.

La pseudo-période a été mesurée pour différentes valeurs de la capacité C ; la fonction T 2 a été tracée en fonction de C. Une
modélisation affine a été superposée à ces données.

Figure 15 – Carré de la pseudo-période en fonction de la capacité. Modélisation affine : coefficient de corrélation 0,999 ;
ordonnée à l’origine −3,0× 10−9 SI ; pente 3,3 SI.

35) En déduire la valeur de l’inductance de la bobine en expliquant la démarche et en justifiant d’éventuelles approximations.

On appelle résistance critique totale, Rct = Rc + Rg + r, la valeur de la résistance totale du circuit permettant d’atteindre
le régime critique, la résistance Rc étant simplement appelée résistance critique. Aucune hypothèse n’est faite sur la valeur
de Q.
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III.2 Oscillateur quasi-sinusoïdal III DÉTECTEUR DE MÉTAUX

36) Montrer que la résistance critique totale vaut Rct = 2

√
L

C
.

Tous les autres paramètres étant fixés, la réponse du circuit à un échelon de tension donne lieu à différents régimes selon
la valeur de la résistance variable R. En voie 1 de l’oscilloscope, l’échelon de tension ; en voie 2, la tension aux bornes du
condensateur, on superpose les réponses du circuit.

Figure 16 – Superposition des réponses du circuit (tension aux bornes du condensateur) soumis à un échelon de tension,
pour trois valeurs différentes de R.

37) Identifier et nommer les trois régimes associés aux courbes 1, 2 et 3 de la figure 16.

III.2) Oscillateur quasi-sinusoïdal

III.2.a) Montage à résistance négative

Les pertes par effet Joule empêchent le maintien des oscillations libres du circuit RLC. Afin de les entretenir, le montage doit
comporter une source d’énergie. Celle-ci est apportée par un amplificateur linéaire intégré, ou ALI, qui est un composant
électronique dont l’alimentation ne sera pas représentée et dont le fonctionnement idéal est décrit lorsqu’il est nécessaire. En
plus de l’ALI, le montage étudié (figure 17) comporte 3 résistances dont une variable, la résistance R3.

Figure 17 – Montage à résistance négative.

38) Sachant que le fonction de l’ALI est telle que i− = 0, déterminer la relation liant ve, vs, R3 et i.

39) Sachant que le fonction de l’ALI est telle que i+ = 0 et que v+ = v−, déterminer la relation liant ve, vs, R1 et R2.

40) En déduire que l’on peut écrire ve = Rni, où Rn est une grandeur négative homogène à une résistance, que l’on exprimera
en fonction de R1, R2 et R3.
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III.2 Oscillateur quasi-sinusoïdal III DÉTECTEUR DE MÉTAUX

III.2.b) Circuit oscillateur de référence

On étudie maintenant le circuit constitué de l’association des deux circuits précédents (figures 14 et 17), dont le schéma est
représenté sur la figure 18.

Figure 18 – Circuit oscillateur

41) Montrer que l’équation différentielle satisfaite par l’intensité i(t) du circuit de l’oscillateur se met sous la forme :

d2i

dt2
+ 2λω0

di

dt
+ ω2

0 i(t) = 0 avec : ω0 =
1√
LC

et λ =
R+ r +Rn

2

√
C

L

42) Déterminer la valeur de Rn qui conduit à des oscillations purement harmoniques non amorties. Quelle est la source
d’énergie permettant de compenser l’effet Joule présent dans les résistances du montage ?
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